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Preface

The multi-faceted mission of the Space Shuttle necessitates
the orbiter's ability to change from one orbit to another.

Many times an orbit chanye includes a change in orbit inclin-
ation which is usually accomplished by a rocket burn in space.
The Space Shuttle (Crbiter can possibly achieve changes in
orbit inclination by makin;, use of the orbiter's airplane-
like ability in the upper atmousphere. This study examines
this possibility and compares it with the rocket maneuver in
space.

Most of the time spent on this study involved the opti-
mization of such an aerodynamic maneuver. Unfortunately, no
results from the optimization problem ensued; however, the
problem is discussed and a better problem statement is proposed
in Chapter VII.

Thanks are due to Caprains Wwilliam wiesel and James Rader
for their advice concerning the system dynamics and the optimum

control problem. Captain Ray Barker was helpful in establishing

a model atmosphere. Special thanks go to nmy wife, Wendy, for

her expertise in editing and typing the final report.

Roger R. J. Harding
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Abstract

Two types of skip reentry trajectories are examined in
the 70 km to 95 km altitude region. The first is a maximum
lift-to-drag analysis which indicates that an aerodynamic
maneuver in order to change the orbit inclination is profitable
when compared to a rocket burn in space to effect the same
change in orbit inclination. The maximum changes in orbit
inclination achieved aerodynamically were approximately
.8 degrees. The second type of analysis considered the optimal
control problem for a skip reentry trajectory. The specific
problem posed was: Find the optimum angle of attack and
bank angle controls which minimize the amount of work doune
by drag for a specific change in orbit inclination. No results
were obtained from this analysis due to the problems encountered
when the optimization technique was applied to the specific

problem.
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OPTIMUM ORBIT PLANE CHANGE USING A SK1P REENTRY TRAJECTCRY
FCR THE SPACE SHUTTLE ORBITER

1 Introduction

Foreword

The Space Shuttle is a spacecraft system comprising
three main elements: two solid propellant rocket boosters,
an external tank, and the orbiter. The solid propellant
rocket boosters are expended during the boost phase of the
mission and are recovered from the ocean for reuse. The
external tank remains coupled with the orbiter until after
orbit insertion; when the fuel in the external tank is
exhausted, the tank is jettisoned and reenters the earth's
atmosphere. The orbiter is capable of delivering a variety
of payloads into orbit as well as retrieving payloads for
return to earth. The orbiter can also carry supplies and
provide accomodations for up to four payload specialists
as well as the crew of three (command pilot, copilot and
mission specialist). Upon completion of orbital operations
the orbiter reenters earth's atmosphere and terminates the
mission with an airplane-like landing.

The purpose of this study is to examine the possibility
of using the orbiter's aerodynamic capabilities to change
the orbit inclination. Previously, spacecraft have changed
orbit inclination by thrusting with rockets perpendicular to

the orbital plane. Such a burn is expensive in terms of




fuel needed for the mission and therefore also expensive :
in terms of added payload weipht during the boost phase.

The orbiter is unique in that it has a relatively good £

{

1 hypersonic lift-to-drag ratio (L/D) of approximately 2 (see

? Ref 8 ). A high L/D indicates a possibility that an aero-

; dynamic maneuver during a skip reentry trajectory could

' provide an effective means for changing the orbit inclination.
A skip reentry maneuver involves entering the earth's

h atmosphere, performing the desired aerodynamic maneuver and

"skipping" back out of the atmosphere.

i Back-of-the-Envelope Calculation

The relatively high L/D for the orbiter is the motivation

| for this study. A simplified calculation of an orbit plane

- ——

change using L/D equal to 2 will follow; this calculation

assumes all motion lies in a plane and the changes in

velocity due to the aerodynamic forces are instantaneous.
A typical reentry velocity is 7200 meters/second; a loss of

300 meters/second is assumed to be a maximum acceptable, since

Ve oy,

300 meters/second is the velocity deficit which can be negated

using the orbiter's maneuvering system (see Ref 8 ).

— il A, L N L

Example
vinitial =x = 7200 m/s ; Vfinal = 7200 - 300 = 6900 m/s
yinitial 0
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Vfinal
A)'r AVigral
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Vinitial - QX Vinitial
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Using, Newton's Second Law, acceleration = (g Forces)/mass

300 m/s = drag/orbiter mass

oy
n

|~
5.
1

lift/orbiter mass

<

I
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<
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Using these two equations,
lift/drag = 2 =Ay/(300 m/s)
or
Ay = 600 m/s
From the geometry of the problem,
totalAV = (6002 + 3002)% = 670 m/s
S0
i = sin‘lA'y/vF
i = 5°
The velocity of the orbiter lies in the orbit plane,
thus the chanpe in direction of the velocity vector, fi, is
also the change in the orbit plane. A plane change of

approximately 5 degrees can be expected from sueh a skip

turn maneuver according to this very rough analysis.
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3 summary

] This study examines a skip turn reentry maneuver in order
to effect a change in orbit inclination for the Space Shuttle

| Orbiter.

.j Second-order parameter optimization finds optimum time

E histories for the controls, which in this case are angle of

i attack and bank angle. The optimization scheme finds these

f controls as polynomial functions of time while minimizing a

3 performance index (work done by air drag). The problem is

| further constrained by specified final conditions, which in

this case are maximum orbital plane change and attainment

of a specific altitude upon completion of the maneuver. The

theory for second-order parameter optimization, or suboptimal

control as the procedure is often called, is presented in
Chapter VI.

Before suboptimal trajectories can be determined, it is
necessary to have a model atmosphere, the orbiter equations
of motion, and the orbiter's aerodynamic data.

The conditions of the earth's upper atmosphere must be

§ suitably modelled in order to evaluate the aerodynamic forces

of 1ift and drag acting on the orbiter. Lift and drag are

P oy

both functions of atmospheric density, temperature, kinetic
viscosity and molecular weight; the 1962 Standard Atmosphere
provides reasonable approximations of same. The orbiter
aerodynamic data obtained from NASA is based on the '62
atmosphere; hence the 1962 Standard Atmosphere is the model

used in this study.
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Solution of the ouptimal control problem requires the
integration of the system equations of motion.from a prescribed
initial state to a final state. The equations of motion are
derived by transforming the forces acting on the orbiter
from a body-fixed reference frame to the geocentric, inertial 4
reference frame and then applying Newton's Second Law. The
forces acting on the orbiter are gravity, 1ift, and drag.

The equations of motion are thus dependent on the model
atmosphere.

The orbiter aerodynamic data necessary for this study
are the lift and drag coefficients. The coefficients are
dependent upon the atmospheric properties, the orbiter's
aerodynamic configuration (angle of attack), and the state of
the earth-orbiter system.

These three prerequisites necessary for the optimization
scheme are quite different when taken individually but become
interdependent when applied to this problem. The equations
of motion are dependent on the aerodynamic forces which in
turn are dependent on the orbiter's aerodynamic coefficients
and the model atmosphere. The orbiter aerodynamic coefficients
are also dependent on the model atmosphere and the state of
the system. The state of the system is evaluated by integrating
the equations of motion. The integration is begun by choosing

an initial state and allowing a numerical integration scheme

to propagate this initial state forward in time. |

Suboptimal control requires integrating the equations

of motion using guessed polynomials for the controls. The

N g Ty g T, T RNTOPI | et Y B, ras "
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performance index and final state are recorded. The coefficients
in the control polynomials are changed slightly and the equations
of motion are inteprated again using the new control polynomials.
Central differencing uses changes in both performance index and
final end conditions with respect to the change in polynomial
coefficients in order to evaluate the first and second partial
derivatives. These partial derivatives are used in suboptimal
control theory to make a better guess at the coefficients in
the control polynomials. The process is repeated until changes
in the control polynomial coefficients become very small.

For a prescribed final altitude and orbit plane change,
optimum control polynomials are found which yield the minimum

work done by drag on the orbiter.
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11 Model Atmosphere

Background

The aerodynamic forces actiong on the Space Shuttle
Orbiter are a function of the state of the system, i.e.
altitude and velocity. Kknowledye of atmospheric properties
at low density altitudes is essential for hypersonic aero-
dynamic trajectory calculations. The 1962 Standard Atmosphere
used by this study provides the necessary atmosphere properties.
The aerodynamic forces are evaluated by solving the following
equations.,

Lift

L}

5 VAC S
5 VAC,S

Drag

where

L}

local atmospheric density

V = free stream velocity relative to the orbiter

C.= lift coefficient

Cp= drag coefficient

S = reference area

Lift and drag are dependent on atmospheric properties

in two ways: (1) directly dependent on air density, and
(2) indirectly dependent on the temperature, molecular
weight, density and kinetic viscosity used for evaluating
l1ift and drag coefficients. Thus an accurate model atmosphere
is essential in order to evaluate the lift and drag forces

and the resulting trajectory.

!
!
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the 1962 sStandard Aitmosphere

[he 1962 sStandard Atmosphere model is an updated version
of earlier atmospheres takiny advantage of increased knowledge
and more accurate determinations of basic quantities. This
model extends to 700 km altitude and assumes an ideal gas
devoid of moisture, water vapor, dust and obeys the perfect
gas law., Further, the ‘62 model is idealized to a mid-latitude
year-round mean over the range of maximum and minimum solar
activity (RefY ). Temperature variations and molecular weight
variations with altitude were obtained experimentally.

The 1962 Standard Atmosphere is used in this study for
two reasons: the Space Shuttle Orbiter aerodynamic data is
based on the '62 atmosphere, and this model atmosphere is

accurate and easy to implement in this study.

Defining Equations

Atmospheric parameters of interest in this study are
temperature, molecular weight of air, density and viscosity.
Upper atmosphere winds are also of interest; however, due to
the complexity of the winds (variations with time and position)
the model simplifies the winds to an atmosphere rotating with
the earth.

The variation of temperature, T, with altitude is taken
to be a piecewise continuous function with constant gradients,
Ln. This model atmosphere uses molecular temperature, Ty, as
the defining property:

Tp = T(3R)

Molecular weight of air, M, is a constant, Mg, up to 90 km

9




altitude. For this altitude regime, the molecular temperature
and the temperature are equal. The interpolating function

for the molecular temperature is:
Tm = Tmy + Lm (2 - Zp)

The subscript b denotes a base altitude which is the altitude
where the local temperature gradient changes.

Values for the molecular weight of air are available
from the model atmosphere only at the base altitudes. However,
the molecular temperature accounts for the varying molecular
weight. All parameters involving molecular weight can be
expressed in terms of temperature and molecular temperature.

The derivation of the density equation uses the perfect
gas law, the standard barometric equation, and geopotential
altitude. Due tou the variation of gravitational acceleration
with altitude, geopotential altitude represents a modified
altitude to account for this variation. This study assumes that
the geopotential altitude is equal to the geometric altitude.
This simplifying assumption results in a negligible five to
seven percent difference from the 1962 Standard Atmosphere
at high altitudes.

Two equations for density, 2, are derived:

P o
;% = 7% exp - 9—%%———ébl for Ly =0
b

and

|
S

-1 . Im
exp (1 + 8;) (log 1 (T;b)) for Ly X O

>

10




where
Ao = atmospheric density at sea level
A/A = known ratioc at the base altitudes
Q = (MgM) / (r?R)

The scale height, Q, is dependent on the local gravitational
acceleration, A4,/r2, the molecular weight of air, M, and the
universal gas constant, R.

Viscosity 1s a necessary parameter for the calculation of
the viscous parameter, VBAR. Viscosity is assumed to exist
at all altitudes and is determined as a function of

temperature, T:

7372
A= sl
where
S = 110.4 K
1
AB = 1.458E+06 kp/mKEs

At any given altitude between sea level and 700 km

temperature, molecular weight, density and viscosity can be

determined using the 1962 Standard Atmosphere. These parameters

are used to evaluate the aerodynamic forces and to integrate

the system equations of motion.

11
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111 System Dynamics

Evaluating Space shuttle Crbiter trajectories and orbit
plane changes involves integrating the system's equations of
motion from a piven initial state to a final state. The equa-
tions of motion are derived by analyzing system dynamics and

applying Newton's Second Law.

Assumptions

The derivation of the equations of motion will involve
the following assumptions:
1. the earth is spherical
2. the earth is inertial

3. the orbiter is a point mass with lift and drag
acting through the center of gravity

4, no sideslip occurs

5. atmospheric wind is taken to be the rotational
velocity of the earth at orbiter's altitude.

These assumptions greatly simplify the dynamics without
detracting substantially from the credibility of the study.
The assumptions that the earth is spherical and inertial are
reasonable approximations since the skip reentry trajectory
maneuver takes a relatively short time; the time span for
such a maneuver is 27 minutes or less. This time span is not
long enough for the effects of an actual non-inertial, non-
sperical earth to produce an appreciable difference from the
simplified two-body case beiny studied here.

The assumption that the orbiter is a point mass with the
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aerodynamic forces acting throuph the center of mass is realistic

in that the orbiter would be trimmed (i.e. no pitching, yawing

or rolling moments) at all times during a skip reentry maneuver.
It is alsou realistic to assume that no sideslip occurs.

The hypersonic veloucities severcly limit the configurations Y

of an orbital vehicle reenterin;; the atmosphere. This problem

is due to extremely hiyh aerodynamic heating faced by any reentry

vehicle. Aerodynamic heating is hirhest on surfaces of the

vehicle exposed to the freestrcam fluw. The orbiter's primary
heat-protective surfaces are around the nose and along the
underside of the vehicle with secondary heat-proutective surfaces
along the sides and top. Thus the relative velocity vector
must lie along or as cluse as possible to the longitudinal
center line of the orbiter.

Trying to accurately model the upper atmecspheric winds
would be extremely cocmplex. Such a wind model would involve
time of day, seasons, positicn, etc. Incorporating such a
model goes beyond the scope of this study; however, assuming
an inertial atmosphere is probably not justifiable. Assuming
an atmosphere rotating with the earth is a sufficient wind

model for this study.

Equations of Motion

The equations of motiun are derived by establishing the

appropriate coordinate systems and applying Newton's Second

lLaw. Two coordinate frames are used. The XYZ frame is inertial
and fixed at the earth's center, The vrelﬁt frame is fixed at

the orbiter’'s center of mass (Fig I111.1).




=<1

X

Figure 111.l1. Etarth-orbiter system coordinate

frames
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The state of the system can be described by the state
variables x,y,z,and X,y,2. These quantities are evaluated
with respect to the inertial frame.

The vrelgi frame is defined in terms of the state variables.

rel ~ Viwxr
M = Vrelx r
|
L=HxV_, i
where
V=xi+yT+2k (m/s)
T =x1 + yg + zk  (m)
— - A
® = 7.292115856 x 10°° k (radians/sec)

A AN
Unit vectors are denoted by the hat symbol,”™, and 1i,j,k

represent unit vectors for the XYZ frame. The angular velocity
of the earth is constant and denoted by w. Thus vrel is the
velocity of the orbiter relative tou the atmosphere, M estab-
lishes a local horizontal and L completes the right-hand
coordinate frame,

Aerodynamic forces are easily expressed in the body-
centered frame (Fig III.1).
L(cos ¢ 1 - sing M)

A
-8 Vrel

Lifc

L}

Drag

where

Z = magnitude of the lift vector
& = magnitude of the drag vector

$ = bank angle of the orbiter

15
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The unit vectors can be expressed in the XYZ coordinate
frame. A transformation matrix is needed to express the forces

acting on the orbiter in terms of the inertial frame. The

N

Palel
unit vectors, V ML, provide a means for transforming an

rel
aerodynamic vector in the body frame to the inertial frame
because the unit vectors are expressed in the inertial frame.

Thus a transformation matrix, T, can be formed by using the

unit vectors as column vectors.

Expanding the defining equations for the VrelNL coordinate

frame starts the derivation for the transformation matrix.

3 i 2 2 ”
[ Vel = (x - wy)l + (y + wx)j + zk
“f = av/i + bvlj\ + Cvk
! SO — _ A A A
i} M = vrelx T = (byz - cyy)i - (ayz - cyx)j + (ayy - byx)k
~ A A
= apl + bpj + cpk E
= =T . ~ 2 ;,J
L =MV 4 = (cybyp - byem)i - (cyay - aycm)J L
+ (bvam - avbm)llz 1

A A A
ajit + blj + Clk

Thus the transformation matrix becomes

ay/sy apfsp ap/s)
T = | by/sy bp/sm by/sy
cy/sy  cpfsp, c1/s1
where

Si = (a2 + .24 c.2) %

16




The equations of motion can be reckoned using Newton's
Second Law.

| s

= ma
f{ where
_ 2 F = (Fyrayicy)xyz * (Fftyy, + (Drag)yy,
¥ ; e (e T (T .
3 (Fravity)xys ¥ T(LEEO) g+ T(Drag) i
Further,
— _ uMm A ALA ;
(Fgravity)XYZ T3 (xi + yj+ zk)
where
GM = earth's gravitational parameter &
m = mass of the orbiter ]
- o e N
a=x1+yj+ zk ;
|
0 |
(llft)VML = - Lsing f
XLcosg 5
l
] %
!.
(Drap)yy, = 0 bj
0 4

By substituting into Newton's Second Law the equations of

motion can be found. 1In component form the equations are:

.o 3. Z . 4 ., %m I av
x = - (UM/r’)x + p (Cos¢g° - sln¢ o ) - = ;‘;
1 m
b b b
S = o 3 é _l i —_— g.—!
= - (UM/r7)y + T (cos¢ 5, - sing 5o ) -5 Sy
. ) 3 <4 Cm Cv
= - oM —_ —2 L Qi —_ - -
z (LM/r)z + = (cos¢ 5) sing = ) gs
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These three second-order equations can be broken down to six

)

first-order equations by redefining the state variables.

' Wy =Y
g Wy = 2
F; W T X
y vs - ;

wg = %

The equations of motion become

W1 T W

, 27"
| 3T M a an a
] v
1 W, = - (GM/r3)w1 +xa (cos ;—1— - sin 5; ) -%g
b b b
.v = N 3 E __]; - >} _E _g—v
Wg = - (GM/r )w2 + 2 (cous . sin om ) m Sy
S 2 (cos 1. g M DO
we = - (QM/r3)w3 + % (cos 5 - sin o= ) - 5 S

The a's, b's ¢'s and s's are also functions of the new variables.

These six first-order equations are inteprated through time

T T

by the CC6600 differential equation inteprator, GDE,

Orbit Plane Change Equation

The change in orbit inclination, or orbit plane change,
due to the skip reentry maneuver is determined by comparing
the states of the system before and after the maneuver. The

angular momentum vector, H, involves the complete state of the

18 !
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orbiter and it is also normal to the orbit plane. Thus the
orbit plane chanye can be found by examining how the angular
momentum vector changes direction (Fig I111.2). The inner
product for two vectors is well-suited for this problem.

Let the subscripts i and f denote initial and final states
respectively.

Hy ° ﬁf = lﬁil lﬁfl cos Ai

.ﬁi and ﬁf indicate the magnitudes of the initial

and final angular momentum. Further,

H=rxV
A i = orbit plane change
Rearranging:
A o1 (FiXx Vi) « (FpXVp)

The plane change calculation is easily carried out using the
above equation.

Integrating the equations of motion to a desired time
and evaluating the change in the state of the system at this
time represent the fundamental dynamics of theproblem.
Evaluations of the aerodynamic forces and the performance

index are discussed in the following chapters.

T TE, TP IORI L I { pae, e 1 0 E5g O]

Dt

Py &
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bi
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- 1v Space Shuttle (Crbiter Aerodynamics

The orbiter is assumed to be a point mass with the
aerodynamic forces, lift and drag, acting through the center
of mass. This assumption simplifies the orbiter aerodynamics
to evaluating only lift and drag.

Lift and drag forces are dependent upon the state of the
system; thus the forces must be constantly evaluated during

the integration of the equations of motion.

: L =% L(x,y,z) CL(X.y.z.X.y.z) Vrelz(X.y.z.X.y.Z)
Y O = ‘/z/o(X.Y.z) CD(X:Y'Z'X’YoZ) Vrelz(x,y,z.x.y.z)

The atmospheric density, A, is obtained from the model atmos-

phere and Vyel is obtained continuously during the integration
of the equations of motion. This chapter explains how the

lift and drag coefficients, C, and C are determined.

L D’

Orbiter Aerodynamic Data

The orbiter aerodynamic data was obtained from the Space
Shuttle reentry office of NASA in Houston, Texas. The infor-
mation included lift and drag coefficient tables as functions
of angle of attack, «, and the viscous parameter, VBAR (see
Table IV.1). Also included in the data package was the infor-
mation necessary to evaluate VBAR and an explanation of how
the 1ift and drag coefficients for the orbiter were derived.

The viscous parameter is a subscale-fullscale simulation
parameter based on the freestream properties Mach number, M,
Reynolds number, Re, and Temperature, T. VBAR is defined as

21
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l

Magf Co/Re)? (Ref 4)

- -(5/T)
(f./l)k 1 + 122.1 X 10 —
T+ 122.1 x 10-C/T")

T (468 + .532(Tw/T) + .195(F-1)/2 M 2 )
.5

2000 F
1.15

1]

C 1is the proportionality factor for the linear viscosity-
temperature relationship. K is an empirical constant. The
specific heat ratio, ¥, is assumed to be constant for the
flight conditions analyzed. A constant wall temperature, Ty,
is also assumed for the orbiter.

The freestream Mach number is the ratio of Vpej t the
freestream speed of sound; a,. The speed of sound is assumed
to exist at all altitudes and can be evaluated using the

following equation:

L
agp = ( R1Iy/Mp)?
where

3

o)
[

8.31432 x 10~ N-m/kg K

The freestream Reynolds number is based on the orbiter

length, s = 32,77 m.
Re = P Vrer1s/AM

Kinetic viscosity, A, is assumed to exist at all altitudes

and is obtained from the model atmosphere,

by Rek St b ACOINAr L
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For values of VBAR yreater than .0l and less than .08
the lift and drap coefficients have been determined experi-
mentally. For values of VBAR greater than .08 to its maximum
value of 5.2, the coefficients are determined analytically
using the Lockheed Empirical Bridging, Formula (Appendix A).
This formula bridpes the transitional flow regime between
centinuum and free-molecular flow regimes.

These tables of aerodynamic coefficients are based on
an assumed nominal reentry trajectory and therefore nominal
velocities. Thus, VBAR is a parameter dependent primarily
on temperature (i.e. altitude). Typically, the extreme values
of VBAR, .01 and 5.2, correspond to altitudes of 67 km and
190 km respectively.

Given the state of the system, VBAR can be evaluated.
with VBAR and the angle of attack available, the corresponding
aerodynamic coefficient can be found. The data is tabulated
at discrete values of angle of attack and VBAR. A four point
bivariate interpolation scheme is employed to evaluate the
coefficients for angles of attack and VBAR's between the
discrete data points. The bivariate interpolation scheme

is a second-order approximation (Appendix B).
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\) Maximum Lift-to-Dray [rajectories

Analyzin; maximum lift-to-dras, L/D trajectories serves

two purposes: first, such an analysis will indicate whether

or not a skip turn reentry trajectory is profitable when

compared to a rocket maneuver outside the atmosphere; and,

second, the analysis will also indicate how large an orbit i

plane change can be expected.
It should be noted here that this analysis is different ]

from the optimal control method explained in the next chapter

in that enerpyy lost to air drag is not minimized, nor is the

change in orbit inclination maximized. Maximum L/D analyses i

¢

are indicative of the performance of any aerodynamic vehicle.

A maximum L/D trajectory implies that at each point along
the aerodynamic maneuver, the orbiter is oriented to the angle

of attack corresponding to the maximum L/D ratio.

Velocity Performance Index

In order to effect an orbit plane change in space, a
rocket burn directed outside of the orbit plane is necessary.
Thus, given an initial orbit and a desired plane change,

a correspondiny, chanye in velocity, AV, can be calculated.

The equation for this computation is:

AV = 2v; sin (Ai/2)
where
Vi = velocity prior to the maneuver
’ Ai = orbit plane change




Fipure V.1 Velocity Vector Geomerry

fhis equation assumes circular initial and final orbits with
’ equal initial and final velocities.

Using a skip turn reentry maneuver to effect an orbit
plane change results in enerpy lost due to air drag. Because
the maneuver starts and ends at the same altitude, the energy
lost is all kinetic energy, i.e. the maneuver results in a
AV. The question of whether or not the aerodynamic maneuver
is profitable can now be properly posed: Given an orbit plane
change, is the AV required for a rocket maneuver, AVR. greater
than the AV required for an aerodynamic maneuver, AVD? ur
asking the same question differently: For a given orbit plane
change, is the ratio AVR/AVD preater than 1?7 If the answer
to these questions is yes, then an aerodynamic maneuver is
profitable.

The ratiOAAVR/AVD is called the velocity performance
index. The maximum L/D analysis compares the velocity perfor-
mance indices for bank anyles varying from 0 to 90 degrees
at perigee altitudes of 95, %0, 85, 80, 75 and 70 km. These

perigee altitudes correspond to initial conditions neplecting

29
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the atmosphere. Actual perijpee altitudes will vary from

those listed above due to atmospheric ctfects.

Discussion of Resulis

Iwo different types of graphs are shown in the following

T firures: velocity performance index vs. bank angle, and

i orbit inclination chanpe vs. bank angle. ]
{ The velocity perfoermance index for peripgee altitudes

é less than and equal to 85 km exceeds one, as shown in Figures F
f V.4 throuph V.7. ‘lhe bank an,.le at which the velocity perfor- '
». mance index becomes greater than one represents the minimum j
k ' ;
E: bank angle for the corresponding peripee altitude at which '
n the aerodynamic maneuver becomes profitable over the rocket L

burn maneuver in spacc.

i

t

|

For a perigec altitude ot 75 km, the graph ends at 70 ﬁ
degrees bank angle (Fi, V.06, If the bank angle exceeds ;
70 deprees, the acrodynanic maneuver i1s no longer a skip g
maneuver; it becomes a total reentry where the trajectory %
I

does not leave the atmosphere. A similar situation occurs ;
for bank angles jyreater than 50 devrees for a perigee altitude E

equal to 70 km. Altitudes less than 70 km are not within the
altitude regime for which orbiter aerodynamic data is available.
Changes in orbit inclination are insignificant for perigee
altitudes greater than 80 km (Fipg V.8 through V.13). Maximum
obtainable orbit ipclination chanpes for periree altitudes

less than 80 km are approximately .8 deyrees. Velocity lost

due to air drag is another parameter of concern. Typically,

velocity lost to dra,, while obrtaining .8 de;rees orbit

30
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o e

inclination chanpe ranes from 60 w/s to 80 m/s. 1If 300 m/s

is an acceptable velocity louss, then orbit inclination changes
vreater than 1 depree are obtainable.. This can be accomplished
by orienting the initial orbit such that the orbiter enters

the atmosphere carlier and leaves later. An alternative would
be to perform the desired orbit inclination change over a
series of skip turn reentry trajectories, i.e. a multiple

orbit revolution maneuver.
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Vi (ptimal Control Technique

Back. round

Gbtaining a change in orbit inclination either an aero-
dynamic turn or a rocket burn in space results in a penalty.
In both types of maneuvers the penalty is energy that must
be supplied tu the system in order to obtain the desired inclin-
ation chanyge without changing the other orbit parameters. The
nmost efficient method to change an orbit inclination outside
the atmosphere is known: fire the rockets in a direction
perpendicular to the orbit plane. (n the other hand, the
optimum angle of atvack and bank angle control histories for
an aerodynamic turn to effect a change in orbit inclination
are not easy to determine and are presently unknown.

An aerodynamic skip turn reentry maneuver results in
energy lost due to air dray. In order to change only the
orbit inclination, the energy lost to air drap must be made
up. This is accomplished by acceleratin,, the orbiter in the
new orbit plane. Thus, an optimum aerodynamic maneuver requires
that the energy lost to air drag be minimized for a specified

change in orbit inclination.

Suboptimal Control

Suboptimal control theory, also called second-order
parameter-optimization, is a second-order method which assumes
that optimal controls can be approximated by polynomial functions
of time (Ref 5, 6). For this study the control variables are
anple of attack and bank angle. The approximating polynomials
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are the Chebyshev polynomials which are chousen because they
are orthogonal on the nondimensional time interval, zero to
one. lhe Chebyshev polynomials will insure that the matrices
in the suboptimal control scheme do not become sinyular due
tc possible linear dependence of the polynomials.

In essence, the suboptimall control problem is to find
the ccefficients of the control polynomials, subject to the
differential constraints (equaticns of motien) and the pre-

scribed boundary conditions (initial state, final altitude

and orbit plane chan;e), which minimize the performance index.

l.List of Symbols

B

vector of control polynoumial cocfficients

G = scalar performance index

E = vector of prescribed final conditions
A = vector of lLagranye multiplier constants
$ = variational derivative

This study uses the subscript notation to denote partial
derivatives, i.e. UB indicates the partial derivatives of
the scalar performance index with respect to the polynomial

coefficients.

Suboptimal Control Formulation and Procedure

An augmented performance index, F, can be formulated

by combining the performance index G with the equality

=i

constraints

F(B,A) G(B) + AE(B)

]
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The lapran;e multipliers.A , are introduced to insure that
linear dependence does not occur. The conditions to be satis-

fied at an extremal point are:

fl
(@)

r
Fy (B,X)
E(B)

fl
(@

The numerical procedure starts with puessed values for B and
A FB and E are linearized about these guessed values.
-~ T _ T
SbB = FBBSB + EB 19
SE

EBSB

These expressions yield §B and §A which result in FBT and E
moving toward zero. Further, since §( ) = ( )new - ( )old

and it is desired that ( )new = (0, then

1
PFB

§E = -QE
where P and Q are scalar factors which control the convergence
process, P and Q take on values from near zero to one.

Combining the previous equations and solving for §B and gA

yields:

§A =(EBFBB

_ . -l T,
§B = -Fup™ (PFy" + Eg'sh)

where

46
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Fpp = Spp BB

BB

These partial derivatives are evaluated numerically using

central differencin; techniques.

In summary, the alporithm for the second-order suboptimal
control scheme is as follows:

1. Guess B and A :

2. Integrate the system equations of motion from an

initial state to a f{inal state

B
4
4
i 3. Compute L, Eyr Fo Fip a
l 4. Select P and Q 3

]
5. If FB = 0, FBB is pusitive definite, and §B is small, i

ok i

the method has converged

PRSSRELSS

6. If convergence criteria have not been satisfied,

e W

set B =B+ §B and A= A+ §A and iterate procedures

2 . thr()U}',h 6 .

The procedure is straiphtforward, but some discussion is

S Y T

necessary concerning initial puesses for A and B and selecting

e T

P and Q.

A pood initial puess for A can bLie obtained from a pradient
approach. The equations for the pradient method are obtained
by settiny FBB = [ and &A= 0. By manipulating the previous

equations, an expression for A can be found:

TR\

The iteration procedure can be started with small values

SR . avah i Abe s BRI T T T st by kL

for P and Q (approximately .1). when it is apparent that the

procedure is converging, P and Q can be increased. As soon as
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the end conditions are satisfied, Q should be set equal to
one in order to preserve the final conditions.

The guess at the coefficients contained in the B vector
must be close to the actual optimal solution. The method
used in this study is to initially consider the case for
zero plane change with a constant anyle of attack. Thus
only one coefficient and one control polynomial need be con-
sidered. The optimal constant anple of attack is a good initial
puess for a linear angle of attack polynomial. When the process
converyges on the optimum linear angle of attack polynomial,
this resulting polynoumial is used as an initial guess for
a quadratic control polynomial, and so on until the next
higher order polynomial does not substantially change the
control history. The next step involves specifying a small
change in orbit inclination and making a guess at a constant
bank angle history while using the previous optimal angle of
attack polynomials. Cnce the process converpges for this new
B, the suboptimal control method is continued with a constant
bank angle history while specifying successively larger changes
in orbit inclination until the end conditions cannot be met.
Using this B as an initial guess for the largest orbit inclin-
ation change, higher order polynomials for the bank angle
control can be found in a manner similar to that described

previously for the angle of attack control polynomial.,
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V1l Conclusions and Recommendations

Maximum [./D Analysis

The analysis and consequent results in Chapter V, though
approximate, indicate that a skip turn reentry maneuver is
profitable for all perigee altitudes between 70 and 95 km.
lThe resulting changes in orbit inclinatioun are approximately
.8 degrees; however, larger changes can be achieved if the
trajectory of the orbiter allows for more time spent in the

atmosphere,

Suboptimal Control Analysis

Most of the time spent on this study concerned the optimal
control problem which, unfortunately, yielded virtually no
results. The problem considered in this study was: Find the
angle of attack and bank angle control histories that minimize
the work done by air drag while meeting the specified end
conditions, orbit plane change and final altitude. Though
this problem is certainly relevant and important, it is poorly
suited to suboptimal control. Three major problems occurred
during the course of this study. First, the final time had
to be specified. A good value for the time could be found
in the case of zero plane change: the time the orbiter spent
between entering and exiting the earth's atmusphere. However,
once an orbit plane change was specified, a good value for the
time was no longer available. Second, the final altitude

had to be specified. [his problem came into focus when it was
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discovered that the suboptimal control scheme was causing, the
orbiter to luse ener,y just so the final altitude constraint
could be met. The unsolved question here is: How is a final
altitude established which is compatible with the desired
orbit plane chanye?

Ihird, at the hicher altitudes, 95 and 100 km, the change
in the performance index with respect tc the control polynomial
coefficients was on the order of 10_2 when the coefficients
started approaching the optimal solution. This led to diffi-
culties in evaluating the second-order partial derivatives which
are necessary for the second-order suboptimal control scheme.

The problem can be restated so that these difficulties
are alleviated. The restated problem follows: Find the
angle of attack and bank anrle time histories that maximize
the change in orbit inclination (minimize -4i) for a given
acceptable loss in energy. Instead of integrating the equations
of motion to a fixed final time, inteprate to a final altitude
(equal to the initial altitude). Thus the loss in energy due
to drag would be all kinetic c¢nergy. This will eliminate the
first two difficulties encountered with the current problem.
in order to alleviate the third difficulty it is recommended
that the analysis be restricted to 90 km peripgee altitude and
lower. The probable difficulty with this newly-proposed
problem will be establishing typical losses in energy that
must be prescribed. This problem is not insurmountable.

Typical values for energy loss can be found using an analysis

similar to that formed in Chapter V of this study.
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! , Due to the importance and interesting nature of a study

.
{ such as this one, it is recommended that optimum skip turn
l reentry trajectories be ilnvestipated further. The newly-
1 posed problems stated previovusly are relevant and also warrant
! further and more accurate investigation.
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Appendix A: Lockheed Bridging, Formula

The Lockheed Bridging Formula is used to evaluate the
aerodynamic force coefficients for the Space Shuttle Crbiter.
The formula bridges the transitional flow regime from continuum

flow to free-molecular flow. The formula is:

- R .. n , S
Ctrans Ccont M (CF.M. Ccont) sin (7T(A + B 10510Kn))

. F o

where

t
§ Ccont = viscous force coefficient values at VBAR = 0.08
% CF M., = Viscous force coefficient values at VBAR = 5.2
f o ldn
g (free-molecular flow)
} n =2
:
: A=3/8

B =1/8

Kn = Knudsen number = ‘A/Lref

Leef = 12.059 meters
A = mean free path = RT/P ( 2 N2 )'1
1 R = universal gas constant = 8,314 x 103 N-m/kg, K

! T = temperature

= pressure

026 1

Avogadro's number = 6.022 x 1 kmol~

9 Z T
1]

= effective molecular collision diameter

= 3,65 x 10'10 meters

(Vs ]
(V9]
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Appendix B: Bivariate Interpolation

The four point bivariate interpolation scheme is used
to find the aerodynamic coefficients between the tabulated

values. The interpolating tormula is:

f(x,y) = flxg + X, yo+r y) = (1 - p)(1 - q) f(x0,yg)
+p(l - q) f(x1,y5) + 94(1 - p) fxg.yy)
+ pq f(xq.yp) + ® (h?)
where
p= 8§x/Ax
q = §y/Ay

The four point interpolation scheme can be show graphically:

*f(xo.yl) Of(xl'yl)

ef(x,y)=f(x_+ X,y + y)

ﬁixo.yo) ﬁE(xl.yo)

where

A x =x; - xq

Ay =y -vyo
§ x
Sy

L1}

X - Xp

(]

Yy - Yo

For this study, x and y correspond to VBAR and angle of

attack respectively,
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